Activation functions determine what activation value neurons should get. Depending on your network's environment, choosing a suitable activation function can have a positive impact on the learning ability of the network.
Name | Graph | Equation | Derivative |
---|---|---|---|
LOGISTIC | $ f(x) = \frac{1}{1+e^{-x}} $ | $ f'(x) = f(x)(1 - f(x)) $ | |
TANH | $ f(x) = tanh(x) = \frac{2}{1+e^{-2x}} - 1 $ | $ f'(x) = 1 - f(x)^2 $ | |
RELU | $ f(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\ x & \text{if} & x \ge 0 \end{cases} $ | $ f'(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\ 1 & \text{if} & x \ge 0 \end{cases} $ | |
IDENTITY | $ f(x) = x $ | $ f'(x) = 1 $ | |
STEP | $ f(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\ 1 & \text{if} & x \ge 0 \end{cases} $ | $ f'(x) = \begin{cases} 0 & \text{if} & x \neq 0 \\ ? & \text{if} & x = 0 \end{cases} $ | |
SOFTSIGN | $ f(x) = \frac{x}{1+\left\lvert x \right\rvert} $ | $ f'(x) = \frac{x}{{(1+\left\lvert x \right\rvert)}^2} $ | |
SINUSOID | $ f(x) = sin(x) $ | $ f'(x) = cos(x) $ | |
GAUSSIAN | $ f(x) = e^{-x^2} $ | $ f'(x) = -2xe^{-x^2} $ | |
BENT_IDENTITY | $ f(x) = \frac{\sqrt{x^2+1} - 1}{2} + x$ | $ f'(x) = \frac{ x }{2\sqrt{x^2+1}} + 1 $ | |
BIPOLAR | $ f(x) = \begin{cases} -1 & \text{if} & x \le 0 \\ 1 & \text{if} & x \gt 0 \end{cases} $ | $ f'(x) = 0 $ | |
BIPOLAR_SIGMOID | $ f(x) = \frac{2}{1+e^{-x}} - 1$ | $f'(x) = \frac{(1 + f(x))(1 - f(x))}{2} $ | |
HARD_TANH | $ f(x) = \text{max}(-1, \text{min}(1, x)) $ | $ f'(x) = \begin{cases} 1 & \text{if} & x \gt -1 & \text{and} & x \lt 1 \\ 0 & \text{if} & x \le -1 & \text{or} & x \ge 1 \end{cases} $ | |
ABSOLUTE1 | $ f(x) = \left\lvert x \right\rvert $ | $ f'(x) = \begin{cases} -1 & \text{if} & x \lt 0 \\ 1 & \text{if} & x \ge 0 \end{cases} $ | |
SELU | $ f(x) = \lambda \begin{cases} x & \text{if} & x \gt 0 \\ \alpha e^x - \alpha & \text{if} & x \le 0 \end{cases} $ | $ f'(x) = \begin{cases} \lambda & \text{if} & x \gt 0 \\ \alpha e^x & \text{if} & x \le 0 \end{cases} $ | |
INVERSE | $ f(x) = 1 - x $ | $ f'(x) = -1 $ |
1 avoid using this activation function on a node with a selfconnection
By default, a neuron uses a Logistic Sigmoid as its squashing/activation function. You can change that property the following way:
var A = new Node();
A.squash = methods.activation.<ACTIVATION_FUNCTION>;
// eg.
A.squash = methods.activation.SINUSOID;